

Motivating Example: The PowerED Study

- **Study Goal**: Evaluate whether a 12-week reinforcement learning (RL)-based intervention reduces opioid analgesic (OA) misuse.
- **Treatment:** Each week, an online bandit algorithm assigns patients to one of 1) brief IVR call (<5mins), 2) longer IVR call (5-10 mins), and 3) live call with counselor (~20 mins). Self-reported responses to weekly surveys and baseline information (e.g., COMM score, pain severity) are used as contextual variables.
- **Outcome:** self-reported OA misuse score.
- **Unfairness might arise**: Hispanics may under-report pain levels due to cultural factors, misleading the RL agent to assign less therapist time

Contributions

- □ Conceptualize counterfactual fairness (CF), a causal based fairness metric, in RL.
- □ Characterize the class of CF policies and demonstrate the form of the optimal CF policy under stationarity.
- Develop a sequential data preprocessing algorithm for fair policy learning.
- □ Theoretical guarantees for asymptotic unfairness control and regret bounds.

Preliminaries

Counterfactual Fairness (CF)

Counterfactual Inference

 $\Box \mathbf{CF}: P(\hat{Y}^{Z \to Z}(U) = y | S = s, Z = z) = P(\hat{Y}^{Z \to Z'}(U) = y | S = s, Z = z)$

Contextual Markov Decision Process (CMDP) U_{t-1}^R U_t^R U_{t-1}^{n} $U_t^{\prime \prime}$ $\left[U_{t}^{S} \right]$ U_{t-1}^S

 $\Box Z \in \{z^{(1)}, \dots, z^{(K)}\}$ is set of all levels of a sensitive attribute. $\Box S_t$ = state; A_t = action; R_t = reward; $U^{(\cdot)}$ = exogenous variable, \Box History up to time $t H_t = \{Z, \overline{S}_t, \overline{A}_{t-1}, \overline{R}_{t-1}\}$.

Counterfactually Fair Reinforcement Learning via Sequential Data Preprocessing

[1] University of Michigan [2] London School of Economics and Political Science | jitwang@umich.edu, *zhenkewu@umich.edu

Counterfactual Fairness under CMDP

Definition (CF in CMDP). Given an observed trajectory $H_t = h_t = \{z, \overline{a}_{t-1}, \overline{r}_{t-1}, \overline{s}_t\}$, a decision rule π_t is counterfactually fair at time t if it satisfies the following condition: $P^{\pi_t}(A_t^{Z \leftarrow z'}(\overline{U}_t(h_t)) = a) = P^{\pi_t}(A_t^{Z \leftarrow z}(\overline{U}_t(h_t)) = a)$

for any $z' \in Z$ and $a \in A$ and $\overline{U}_t(\cdot) = \{U_1^S(\cdot), U_1^R(\cdot), \dots, U_{t-1}^S(\cdot), U_{t-1}^R(\cdot), U_t^S(\cdot)\}$.

Candidate	Talent	Gender	Pre-college school level	SAT score
A	100	Female	Тор	1500
	100	Male	Тор	1550
В	100	Male	Тор	1550
	100	Female	Тор	1500

Theorem 1 (Co CMDPs, π_t satisfi	unterfactual ies CF if it adr	augmentation). Go in the form $\pi_t(\bar{S}_t, \bar{J})$
all counterfactual states at time <i>t</i>	$\mathcal{S}_t = \{S_t^{Z} \in$	$(\overline{U}_t(h_t))\}_{k=1,K}$
all counterfactual	$\mathcal{R}_t = \{R_t^{Z \leftarrow z}\}$	$Z^{(k)}(\overline{U}_t(h_{t+1})))\}_{k=1,K}$
rewards at time <i>t</i>		

Theorem 2. (Stationarity of optimal CF policy) Let *HCF* denote the class of policies $\pi = {\pi_t}_{t\geq 1}$ where each π_t maps $(\bar{S}_t, \bar{\mathcal{R}}_t, \bar{a}_{t-1})$ to a probability mass function of *A*. Let *SCF* denote the class of $\pi = {\pi_t}_{t\geq 1} \in HCF$ for which there exists some function π^* such that $\pi_t(\bar{S}_t, \bar{\mathcal{R}}_t, \bar{a}_{t-1}) = \pi^*(\bar{S}_t)$ for any $t \ge 1$ almost surely. Then, under stationary CMDP, there exists some $\pi^{opt} \in SCF$ such that

> $J(\pi^{opt}) = \sup J(\pi) ,$ $\pi \in HCF$

where $J(\pi) = E_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} R_{t} \right]$ with discount factor $\gamma \in (0,1)$.

Takeaways: Under stationary CMDPs, we only need to focus on stationary policies.

Sequential Preprocessing Algorithm

- **Assumption 1:** For any t < T, conditioning on H_t blocks all backdoor paths from A_t to S_{t+1} and from A_t to R_t .
- **Assumption 2:** For any t < T, S_{t+1} , $R_t \perp \{ S_{t+1}, R_t \mid t \}$
- **Assumption 3.** For any t > 1, U_t^S and U_{t-1}^R are deterministic functions of H_t .
- \Box Assumption 4 (additivity of exogeneous variables). For all time $t \ge 0$, the exogeneous variables U_S^t and U_R^t are additive to S_t and R_t , respectively.

Algorithm 1 Proposed sequential data preprocessing

- **Input:** Original data $\mathcal{D} = \{(s_{it}, z_i, a_{it}, r_{it}) : i = 1, ..., N; t = 1, ..., T\}.$
- 1: Fit the mean of transition kernel $\hat{\mu}(s, a, z)$ by MSE on \mathcal{D} . 2: Estimate $\hat{\mathbb{E}}(S_1|Z=z)$ and $\hat{P}(Z=z) \ \forall z' \in \mathbb{Z}$ by the empirical means.
- 3: for i = 1, ..., N do
- Calculate $\hat{s}_{i1}^{z'} = s_{i1} \hat{\mathbb{E}}(S_1|Z=z) + \hat{\mathbb{E}}(S_1|Z=z'), \forall z' \in \mathcal{Z}.$ 5: Set $\tilde{s}_{i1} = [\hat{s}_{i1}^{z^{(1)}}, \dots, \hat{s}_{i1}^{z^{(K)}}]^{\top}$.
- for $t = 2, \ldots, T$ do
- $[\hat{s}_{it}^{z'}, \hat{r}_{i,t-1}^{z'}]^{\top} = [s_{it}, r_{i,t-1}]^{\top} \hat{\mu}(s_{i,t-1}, a_{i,t-1}, z_i) + \hat{\mu}(\hat{s}_{i,t-1}^{z'}, a_{i,t-1}, z'), \forall z' \in \mathcal{Z}.$
- $\tilde{s}_{it} = [\hat{s}_{it}^{z^{(1)}}, \dots, \hat{s}_{it}^{z^{(K)}}]^{\top},$ $\tilde{r}_{i,t-1} = \sum_{k=1}^{K} \hat{P}(Z = z^{(k)}) \hat{r}_{i,t-1}^{z^{(k)}}.$
- end for 10:
- 11: **end for**

Output: Preprocessed experience tuples $\{(\tilde{s}_{it}, a_{it}, \tilde{r}_{it}, \tilde{$

Jitao Wang^[1], Chengchun Shi^[2], John D. Piette^[1], Joshua R. Loftus^[2], Donglin Zeng^[1], Zhenke Wu^{[1]*}

- Given observed history $H_t = h_t$ under $\overline{\mathcal{R}}_t, \overline{a}_{t-1}$) for any t where
- and $\bar{\mathcal{S}}_t = \{\mathcal{S}_{t'}\}_{t' \leq t}$,
- and $\overline{\mathcal{R}}_t = \{\mathcal{R}_{t'}\}_{t' \leq t}$.

$$\{S_j, R_{j-1}, A_j\}_{j \le t-1} \mid S_t, A_t, Z.$$

$$(\tilde{r}_{it}): i = 1, \dots, N; t = 1, \dots, T\}.$$

are assumed to be known – (S_t) . □ We also investigate the impact of Number of samples (N) education

Difference due to η

Application to PowerED Study Data

- □ 207 patients over 12 weeks.

Va	<u>ue</u> :	Ful	>	U	Inaw	are	>

Metric	Method	Education	Age	Sex	Ethnicity
	Full	$\frac{1}{0.44} (0.14)$	$\frac{1180}{0.50(0.15)}$	$\frac{0.61}{0.61}$ (0.15)	12000000000000000000000000000000000000
Unfairness	гuп	0.44(0.14)	0.59(0.15)	0.01(0.15)	0.59(0.15)
	Random	$0.00\ (0.00)$	$0.00\ (0.00)$	$0.00\ (0.00)$	$0.00\ (0.00)$
	Unaware	$0.10\ (0.03)$	$0.10\ (0.02)$	$0.08\ (0.03)$	0.21 (0.05)
	Ours	$0.06\ (0.02)$	$0.08\ (0.02)$	0.07 (0.02)	$0.16\ (0.03)$
Value	Full	57.09(0.31)	57.29(0.30)	57.20(0.39)	56.87(0.33)
	Random	$56.61 \ (0.22)$	$56.66\ (0.27)$	$56.53 \ (0.27)$	$56.54\ (0.39)$
	Unaware	$57.01 \ (0.18)$	$57.21 \ (0.29)$	$56.96\ (0.32)$	$57.00\ (0.31)$
	Ours	$57.05\ (0.30)$	$57.11 \ (0.28)$	$56.95\ (0.51)$	$56.93\ (0.48)$

References

Kusner, M. J., Loftus, J., Russell, C., & Silva, R. (2017). Counterfactual Fairness. Advances in Neural Information Processing Systems, 30. Chen, H., Lu, W., Song, R., & Ghosh, P. (2022). On Learning and Testing of Counterfactual Fairness through Data Preprocessing (No. arXiv:2202.12440). arXiv. Wang, J., Shi, C., Piette, J.D., Loftus, J.R., Zeng, D. and Wu, Z., 2025. Counterfactually Fair Reinforcement Learning via Sequential Data Preprocessing. arXiv preprint arXiv:2501.06366.

With gratitude to Jianhan Zhang (jianhanz@umich.edu) for drafting this poster.

Numerical Study

- Compare our proposal against the following in terms of value and fairness:
 - \Box Full: uses all variables including the sensitive attribute (S_t, Z) .
 - \Box Unaware: uses all variables except the sensitive attribute (S_t) .
 - Oracle: uses concatenations of counterfactual states and rewards, which
 - □ *Random:* a policy that selects actions at random.
 - Behavior: the policy that was used to collect the input training data.

method 🔶 Full 📥 Oracle 🖶 Ours 井 Random 😽 Unaware

□ sensitive attributes (separate analyses): education, age, sex, ethnicity.

□ State variables: weekly pain, pain inference scores.

 \Box Reward = 7 – weeky self reported opioid medication risk score

Unfairness: Random < Ours < Unaware < Full</p>

Ours > Random (in general)